skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gardner, Sophia"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Clutches are integral components in robotic systems, enabling programming of system stiffness and precise control over a wide range of motion types. While different types of clutches exist, electroadhesive (EA) clutches present several key advantages, such as flexibility, low mass, low power consumption, simplicity, and fast response. Achieving high EA stress in EA clutches has remained a challenge, however, necessitating high voltage input or a large contact area to achieve the desired force. In this work, an EA clutch is proposed with a high EA stress achieved by taking fracture mechanics into account and using a high dielectric composite layer while still maintaining a comparable high switching speed to other dielectric‐based EA clutches. The maximum EA stress is observed to be 108.8 N cm−2, which is four times larger than what has been reported previously among dielectric‐based EA clutches at room temperature. This high EA stress clutch can facilitate miniaturization and lower the operating voltage as well as extend to high load capacity applications. The proposed approach holds promise for advancements in various domains, including haptics (both kinesthetic and cutaneous), exoskeletons, walking robots, and other systems that require compliance, low mass, and precise force control. 
    more » « less